Tag: rbf神经网络

改进的rbf神经网络对期货价格的预测分析

的 改进的 rbf 神经网络对期货价格的预测分析 摘要针对非线性变化的期货价格,建立了基于主成分分析RBF神经网络模型第一利用主成分分析法从 8 个原始变量中提取主成分最后利用选定的 3 个主成分作为径向基神经网络的输入通过对比该方法较一样的径向基神经网络有更好的推测结果关键词期货;主成分分析;RBF 神经网络;推测1 引言在对实际咨询题进行描述和处理中为了能够获得更加全面的信息我们经常需要统计多个变量的数据然而这些多个变量之间经常存在一定的有关性并不是每个变量差不多上我们所需要的或者讲它们携带的信息可能是重复的因此我们期望用少数几个变量来代替原有的多个变量主成份分析法的差不多思想确实是通过对原始数据的降维将多个相互关联的变量转化为少数几个互不相干的变量的统计方法由于期货价格的变化是一个非线性的时刻序列利用传统的统计方法对期货的价格直截了当进行推测所得到的结果不是专门理想而神经网络在非线性模式中具有优势,因而它不需要建立复杂的数学模型就能够完成期货价格推测基于 BP 网络和 RBF 网络的推测都有较好的结果,然而相对 BP网络而言,利用 RBF 神经网络不仅解决了常用 BP 网络易陷入局部最小的咨询题,而且训练时刻更短,推测的精度也比 BP 网络高得多本文提出使用基于

基于神经网络模型的期货量化交易策略研究

基于神经网络模型的期货量化交易策略研究

一、引言

期货作为虚拟经济中的一员,不稳定性、高度流动性、高投机性和高风险性是期货的特征。期货的价格趋势受到众多因素的影响,比如,国际经济形势、财政政策和货币政策、社会发展状况以及投资者的从众心理。因此,对期货价格的预测是非常复杂的,它的规律也是难以把握的,但是这并没有阻碍国内外的众多学者们对股票预测研究的积极性。自从证券投资市场成立以来,学者们就没有停止对股票价格预测的探索。随着科学技术的进步和人工智能的发展,用以分析期货市场的方法层出不穷,本文选用非线性的神经网络模型对期货产品的价格进行短期预测,为期货投资者做出量化的交易策略。

二、文献综述

期货市场常用的预测方法有如下三类:一是传统投资方法,如基本面分析和技术面分析;二是时间序列分析法,如移动平均法、趋势外推法、指数平滑法、ARMA模型、ARIMA模型等;三是非线性系统分析法,如神经网络模型。很多学者用传统模型和神经网络模型同时进行分析研究,均认为后者的预测效果更好。

“人工神经网络”的概念在1943年被Warren.McCulloch和Walter.Pitts两位学者提出来,他们基于人类大脑处理信息的方式,通过数学模型来研究生物神经元的信息处理方式,从原理上证明了人工神经网络可以进行算术运算和逻辑运算。神经网络的理论和实践从此拉开了帷幕。

用BP神经网络可以解决很多行业中的实际问题,如MiZhang和ChanghaoXia(2017)建立非线性类型神经网络模型对电力系统载荷进行预测;Kolarik和Rudorfer在1994年将人工神经网络模型与ARIMA模型进行比较,发现前者的预测精度较高;李小刚和王静等(2017)采用BP神经网络对土壤墒情进行预测研究,结果表明对短期的预测有效果;张泽国和尹建川等(2017)通过粒子群优化算法,即SAPSO-BP神经网络模型对港口潮汐进行预报,达到了理想的预测效果;林中冠和栾健(2017)运用双隐层BP网络对雷暴潜势进行预测,得到的预报结果和现实情况差距不大;何丹(2017)将遗传神经网络应用在CPI的预测中,实证表明此方法比传统的BP神经网络的预测效果要好,并有很好的应用前景。

RBF神经网络在其他科学领域也有很多的作用,如宋苏民与旷文珍等(2017)经过比较灰色预测、BP神经网络和RBF神经网络对铁路货运量预测的误差,得出RBF神经网络的误差最小,并且为后续的相关研究提供了一种优良的方法;石波和张冬青等(2016)利用遗传算法对RBF神经网络进行了优化,来分析和预估我国大豆价格的趋势,研究结果表明此模型能够很好地把握大豆价格变化规律,能促进我国大豆市场更健康地发展;徐静和王勃(2017)将RBF神经网络应用于企业人力资源需求方面,取得了很好的预估效果;李瑞和张悟移(2016)利用RBF神经网络对我国2020年的物流业能源消耗进行了预料,并与GM(1,1)模型和BP神经网络进行比较,得出RBF神经网络的预估精度最高。

综合上述,到目前为止,神经网络模型是预测股票期货等金融产品价格最合适的方法。

三、研究内容及方法

本文选取了2016年6月1日至2017年6月19日铁矿石期货的收盘价和成交量数据,如图1。收盘价的样本均值与中位数相差1.5%,表明数据基本不存在较大的左偏或右偏;而成交量的均值远大于中位数,表明成交量呈右偏分布,即存在某几天的交易量极大。

四、实验设计与结论

本文建立BP神经网络模型和RBF神经网络模型以铁矿石期货价格为研究对象进行预测,通过比较模型的平均绝对百分比误差得出:RBF神经网络模型的MAPE(平均绝对百分比误差)包含五个输入变量——第一至五天的收盘价——时,模型的MAPE(平均绝对百分比误差)为1.97%,包含六个输入变量——第一至五天的收盘价和第五天的交易量——时,模型的MAPE(平均绝对百分比误差)为5.85%;BP神经网络模型包含六个输入变量——第一至五天的收盘价和第五天的交易量——时,MAPE(平均绝对百分比误差)为3.68%,包含五个输入变量——第一至五天的收盘价——时,MAPE(平均绝对百分比误差)为6.40%,因此,综合而言RBF神经网络模型在短期的预测效果更好,有较高的应用价值,可以作为一种预测方法进行推广。

期货市场论文-改进的RBF神经网络对期货价格的预测分析.doc

期货市场论文-改进的RBF神经网络对期货价格的预测分析.doc》由会员分享,可在线阅读,更多相关《期货市场论文-改进的RBF神经网络对期货价格的预测分析.doc(6页珍藏版)》请在人人文库网上搜索。

期货市场论文-改进的神经网络对期货价格的预测分析摘要:针对非线性变化的期货价格,建立了基于主成分分析的RBF神经网络模型。首先利用主成分分析法从8个原始变量中提取主成分,最后利用选定的3个主成分作为径向基神经网络的输入。通过对比,该方法较一般的径向基神经网关键词:期货;主成分分析;RBF神经网络;预测1在对实际问题进行描述和处理中,为了能够获得更加全面的信息,我们经常需要统计多个变量的数据。但是这些多个变量之间经常存在一定的相关性,并不是每个变量都是我们所需要的,或者说它们携带的信息可能是重复的。因此我们希望用少数几个变量来代替原有的多个变量。主成份分析法的基本思想就是通过对原始数据的降维,将多个相互关联的变量转化为少数几个互不相干的变量的统由于期货价格的变化是一个非线性的时间序列,利用传统的统计方法对期货的价格直接进行预测,所得到的结果不是很理想。而神经网络在非线性模式中具有优势,因而它不需要建立复杂的数学模型就可以完成期货价格预测。基于BP网络和RBF网络的预测都有较好的结果,但是相对BP网络而言,利用RBF神经网络不仅解决了常用BP网络易陷入局部最小的问题,而且训练时间更短,预测的精度也比BP网络高得多。本文提出使用基于主成分分析法的RBF神经网络方法对期货价格进行预测。通过主成分分析法对原始数据降维,然后,再用这些个数较少的新输入变量作为RBF神经网络的输入进行模拟预测。由于主成分之间是相互独立的,所以由各主成分组成的输入空间不存在自相关性,从而有效地简化了RBF网络在高维时难以寻找网络中心的问题,2主成分分析法简介及RBF2.1(1主成分分析法的目的就是使用较少的变量代替并综合反映原来较多的信息,综合后的变量就是原来多变量的主要成分,利用这些综合后的主要成分去代替原来的变量去解决实际问题。这里首先利用以下公式对原始变量进行标准化处理。其中原变量为xijj个变量的第i个值,则处理后的变量值为yij(3)计算矩阵R利用R的特征方程|R-i|=0求出其特征根,其对应的特征向量利用|R-i|A=0和AA=1(4利用公式Ki=i/ni=1代入所求的特i,求出各个主成分的贡献率Ki(5主成分的确定方法主要有两种:(1)当前个主成分的累计贡献率达到某一特定值的时,则保留前个主成分。一般采用超过85%以上。(2)选取特征值大于1的主成分。这两种可视情况进行选取,一般前者取得主成分要多,后者2.2RBF神经网络算径向基(RBF)网络是以函数逼近理论为基础构造的一类向前网络。其网络结构为三层,隐含层采用高斯函数为激励函数,理论上,只要隐含层中有足够的径向基神经元,径向基函数网络就可以逼近任何非线性函数。输出层为简单的线其中W1i为每个隐含层神经元与输入层相连的权值向量,Xq为输入矢量,b1i为阈值。则隐含层的第ikqi=j(w1ji-xqj)2b1irqi=exp(-kqi)2)=exp(-(|w1ji-Xq|b1i)2)输出层的输入则为各隐含层神经元的加权求和。由于激励函数为线性函数,yq=ni=1riw22RBFw2。再通过有教师学习,确定训练隐含层与输出层间的权值w1i。在RBF网络训练中,隐含神经元的数量确定是一个关键的问题。其基本原理是从0个神经元开始训练,通过检查输出误差使网络自动增加神经元。每次循环使用,使网络产生的最大误差所对应的输入向量作为权值向量w1i,产生一个新的隐含层神经元,然后检查新网络的误差,重复此过程直到达到误差要求或最大隐含层神经元为止。由此可见,径向基函数网络具有结构自适应确定、输出与初始权值无关等特点。3改进的RBF3.1期货的价格是受很多因素影响,如国家政策、季节气候、供求关系、战争等,所以其价格会上下波动,呈现出一个非线性时间序列。其交易价格本文选取2007年6月7日至8月29日燃油0801每个交易日的开盘价、最高价、最低价、收盘价、交易量、持仓量、前5日均价、前10日均价为初始变量,每个变量60个数据,前59个为训练样本,最后一个为检测样本。考虑到期货交易与股票交易的不同,其交易方式是双向交易,从投资者获利的角度考虑,其并不像股票市场一样单纯的考虑股票价格增长,加上每个星期正常的期货交易日仅为5天,所以在这里我们考虑选取后5日均价作为预测目标,这样的选择更有实际意义。在这里本文直接利用SPSS软件包,选择数据降维,再选用主成分分析,可以直接得到各个主成分的方差累计贡献率,如表1从表中我们可以看出,第一个主成分主要包含了开盘价、最高价、最低价、收盘价、以及前5日均价共五个变量的信息,第二个主成分主要包含了成交量和持仓量两个变量的信息,而第三个主成分则主要包含了前十日均价一个变量的信息。由此可以看出,通过数据降维,将原来的8个变量,转化为现在的3个变量3.2现设计一个三层的神经网络,输入层有3个神经元,输出层神经元为1个。利用下式对输入、输出值进行标准化,可使得输入、输出值其均落在,xn=2*(x-minx)/(maxx-minx)-1在matlab的神经网络工具箱中用newrb函数设计这个径向基函数网络,用其作函数逼近时,可自动增加隐含层神经元,直到达到均方误差为止,利用语句:net=newrb(P,T,GOAL,SPREAD)进行网络设计,其中GOAL为均方误差,这里取值为0.0001,SPREAD为径向基函数的扩展速度,其值越大,函数的拟合就越平滑。经过试验,当其取0.058时,其预测效果最好。把2007年6月7日至8月28日的燃油0801选定的主成分作为输入的训练样本,标准化的后5日均价的值作为输出的训练样本,8月294结语由此可看出基于主成分分析法的径向基神经网络较一般的径向基网络有更简洁的网络结构,对于相对比较复杂的期货价格预测,基于主成分分析法的径向基神经网络得到的结果也更加精确。不过径向基神经网络本身对扩展速度的选择没有一个固定的标准,不同的值得到的结果有较大的偏差,这是该网络的一个缺1,白玫,李自珍.基于主成分-BP神经网络的期货市场预测J.数学的实践与认识.2007,(7):23-26.2.RBF神经网络主成分分析法在交通量预测中的应用J.山西科技,2001,(1):54-56.3.统计手册M.北京:科学出版社,2003:559-561.4.神经网络理论与MATLAB实现M.北京:电子工业出版社,2005:117-119.